Texas Instruments Power Supply bq24010 2 User Manual

b
q
2
4
0
1
0
/
2
(
b
q
T
I
N
Y
)
1
Ć
A
S
i
n
g
l
e
Ć
C
h
i
p
L
i
Ć
I
o
n
a
n
d
L
i
Ć
P
o
l
C
h
a
r
g
e
M
a
n
a
g
e
m
e
n
t
I
C
W
i
t
h
I
n
t
e
g
r
a
t
e
d
P
o
w
e
r
F
E
T
a
n
d
C
u
r
r
e
n
t
S
e
n
s
e
E
v
a
l
u
a
t
i
o
n
M
o
d
u
l
e
User’s Guide  
January 2003  
PMP Portable Power  
SLUU125A  
 
EVM IMPORTANT NOTICE  
Texas Instruments (TI) provides the enclosed product(s) under the following conditions:  
This evaluation kit being sold by TI is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION  
PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided  
may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective  
considerations, including product safety measures typically found in the end product incorporating the goods.  
As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic  
compatibility and therefore may not meet the technical requirements of the directive.  
Should this evaluation kit not meet the specifications indicated in the EVM Users Guide, the kit may be returned  
within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE  
WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED,  
IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY  
PARTICULAR PURPOSE.  
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user  
indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products  
received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction  
oftheproduct, itistheusersresponsibilitytotakeanyandallappropriateprecautionswithregardtoelectrostatic  
discharge.  
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE  
TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.  
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not  
exclusive.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein.  
Please read the EVM Users Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM  
UsersGuidepriortohandlingtheproduct. Thisnoticecontainsimportantsafetyinformationabouttemperatures  
and voltages. For further safety concerns, please contact the TI application engineer.  
Persons handling the product must have electronics training and observe good laboratory practice standards.  
No license is granted under any patent right or other intellectual property right of TI covering or relating to any  
machine, process, or combination in which such TI products or services might be or are used.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  
 
EVM WARNINGS AND RESTRICTIONS  
ItisimportanttooperatethisEVMwithintheinputvoltagerangeof5.6Vandtheoutputvoltage  
range of 0 V and 4.25 V.  
Exceeding the specified input range may cause unexpected operation and/or irreversible  
damage to the EVM. If there are questions concerning the input range, please contact a TI  
field representative prior to connecting the input power.  
Applyingloadsoutsideofthespecifiedoutputrangemayresultinunintendedoperationand/or  
possible permanent damage to the EVM. Please consult the EVM Users Guide prior to  
connecting any load to the EVM output. If there is uncertainty as to the load specification,  
please contact a TI field representative.  
During normal operation, some circuit components may have case temperatures greater than  
60°C. The EVM is designed to operate properly with certain components above 60°C as long  
as the input and output ranges are maintained. These components include but are not limited  
tolinearregulators, switchingtransistors, passtransistors, andcurrentsenseresistors. These  
types of devices can be identified using the EVM schematic located in the EVM Users Guide.  
When placing measurement probes near these devices during operation, please be aware  
that these devices may be very warm to the touch.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  
 
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1  
1.2  
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Performance Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1  
2.2  
I/O and Jumper Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.2.2 Equipment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
3
Schematic, Physical Layouts, and Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1  
3.2  
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Physical Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.2.1 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3.3  
3.4  
Figures  
21  
31  
32  
33  
34  
Load Test Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
EVM Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Assembly View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Tables  
11  
31  
Performance Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
v
 
vi  
 
Chapter 1  
Introduction  
This users guide describes the bq24010/2 (bqTINY ) evaluation module.  
The EVM provides a convenient method for evaluating the performance of a  
charge-management solution for portable applications using the bq24010/2  
product family. A complete designed and tested charger is presented. The  
charger is designed to deliver up to 1.0 A of continuous charge current, but is  
programmed for 0.7 A, for single-cell Li-Ion or Li-Pol applications using a dc  
power supply.  
Topic  
Page  
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
1.2 Performance Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
bqTINY is a trademark of Texas Instruments.  
1-1  
 
Background  
1.1 Background  
The bqTINY series are highly integrated Li-Ion and Li-Pol linear charge  
management devices targeted at space limited portable applications. In a  
small package, the bqTINY series offer integrated PowerFET and current  
sensor, reverse blocking diode, high accuracy current and voltage regulation,  
charge status, and charge termination.  
The bqTINY charges the battery in three phases: conditioning, constant  
current, and constant voltage. Charge is terminated on the basis of minimum  
current. An internal charge timer provides backup safety for charge  
termination. The bqTINY automatically restarts the charge if the battery  
voltage falls below an internal threshold. The bqTINY automatically enters  
sleep mode when V supply is removed.  
CC  
In addition to the standard features, different versions of the bqTINY offer a  
multitude of additional features. These include temperature-sensing input for  
detecting hot or cold battery packs, power good (PG) output indicating the  
presence of the ac adapter, a TTL-level charge enable input (CE) to disable  
or enable the charge process, and a TTL-level timer and termination-enable  
(TTE) input to disable or enable the fast-charge timer and charge termination.  
1.2 Performance Specification Summary  
This section summarizes the performance specifications of the EVM.  
Table 11 gives the performance specifications of the EVM.  
Table 11.Performance Specification Summary  
Specification  
Test Conditions  
Min  
Typ  
Max Units  
Input dc voltage, V  
V
+0.5 5.0  
REG  
5.2  
V
A
I(DC)  
Battery charge current, I  
Power dissipation  
See note  
0.7  
O(CHG)  
(V  
V  
)*I  
1.5  
W
(DC+)  
(BAT+) (CHG)  
This input voltage maximum is a function of the maximum allowable power dissipation on the IC. The current level is pro-  
grammed for 0.7 amps. If the programmed charge is changed, then the maximum input voltage needs to be adjusted.  
P
= 1.5 Watt = I  
(V  
V  
).  
BAT+  
maxIC  
CHG DC+  
1-2  
 
Chapter 2  
Test Summary  
This chapter shows the test setups used and the tests performed in evaluating  
the EVM.  
Setup: The bq24010/2 EVM board requires a 5-VDC, 1-A power source to  
provide input power and a single-cell Li-Ion or Li-Pol battery pack. The test set-  
up connections and jumper setting selections are configured for a stand-alone  
evaluation but can be changed to interface with external hardware, such as a  
microcontroller.  
Topic  
Page  
2.1 I/O and Jumper Connecations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2-1  
 
I/O and Jumper Connections  
2.1 I/O and Jumper Connections  
Jack  
Connect To:  
J1DC+  
J1DC–  
J2BAT+  
J2BAT–  
J2TS  
Power supply positive, preset to 5.0VDC, 1-A current limit.  
Power supply ground  
Positive battery pack terminal  
Negative battery pack terminal  
NC  
J2BAT–  
J3STAT1  
J3STAT2  
J3DC–  
J3PG  
NC  
External hardware if J4-EXT is jumpered (Not jumpered from factory)  
External hardware if J5-EXT is jumpered (Not jumpered from factory)  
Return for J3 signals  
External hardware if J6EXT if jumpered (Not jumpered from factory)  
J4 (Jumper) STAT1 indication location LED (EVM) | EXT  
J5 (Jumper) STAT2 indication location LED (EVM) | EXT  
J6 (Jumper) PG indication location LED (EVM) | EXT  
Note: Factory jumper selections shown in bold.  
2.2 Test Procedure  
Set up the evaluation board as described above, by making the necessary I/O  
connections and jumper selections. Before test and evaluation, it is  
important to verify that the maximum power dissipation on the IC is not  
exceeded: P  
= 1.5 watts.  
(MAX)  
1) Turn on the power supply, which was preset to 5.0 VDC and 1 A for the  
current limit setting.  
2) The bq24010/2 enters preconditioning mode if the battery is below the  
V
threshold. In this mode, the bq24010/2 precharges the battery  
(LOWV)  
withalowcurrent(typicallyI  
/10=0.7A/10=70mA)untilthebattery  
O(CHG)  
voltage reaches the V  
threshold or until the precharge timer  
(LOWV)  
expires. If the timer expires, then the charge current is terminated, the  
bq24010/2entersfaultmode, andbothLEDsturnoff. Togglinginputpower  
or battery replacement resets fault mode.  
3) Once the battery voltage is above the V  
threshold, the battery  
(LOWV)  
enters fast-charge mode. This EVM is programmed for 0.7 amps of fast  
charging current.  
4) Once the battery reaches voltage regulation (4.2 V), the current tapers  
down as the battery reaches its full capacity.  
5) The battery remains at the fast-charge mode until the fast-charge timer  
expires, the charge taper time expires, or the charge termination threshold  
is reached.  
6) If the battery discharges to the recharge threshold, the charger starts fast  
charging.  
2-2  
 
Test Procedure  
In place of a battery, a source meter that can sink current can easily be  
adjusted to test each mode.  
Another way to briefly see each mode on a scope is to connect a 1-mF  
capacitor and a 10-kresistor on the output in place of a battery to observe  
the power-up and cycling between voltage regulation and fast charge via the  
refresh threshold.  
The difference between the bq2401x parts, where x is a 0 or 2, is as follows:  
The functions on the 0 part are power good output (PG) for pin 7 and  
temperature sense Input (TS) for pin 8. On part 2, pin 8 is charge enable (CE).  
From the factory, the CE pin has a pulldown resistor and the TS pin is set at  
50%ofV , whereapplicable. Thesesignals, ifapplicable, areavailableatthe  
CC  
connectors for external control.  
Note:  
Because of the battery-detection circuit, it is not possible to switch-in static  
load resistors to jump between regulation and constant-current modes. An  
alternate procedure described below uses a dynamic load to replace the  
battery circuit. That procedure allows testing of each mode.  
This is an alternative way of testing the EVM using a dynamic load board in  
place of a battery. The circuit is adjusted to work with the displayed parts and  
their inherent thresholds. The sequence of the test procedure is important  
because of the active battery-detection circuit, refresh feature, and precharge  
and fast-charge current levels. (Switching load in or out has different results  
in different modes.) No damage should occur, but results might be different  
than anticipated if procedure is altered.  
Test Summary  
2-3  
 
Test Procedure  
2.2.1 Equipment  
1) Power source: current-limited 5-V lab supply with its current limit set to  
1.0 A ±0.1 A  
2) Two Fluke 75, equivalent or better  
3) Oscilloscope TDS220 or better  
4) Load test board (See Figure 21.)  
Figure 21. Load Test Board  
Power Supply  
DMM  
Volts  
S4  
S1  
S2  
S3  
UUT  
5.1 V ± 0.1 V  
R1  
bq24010/2 EVM  
Current Limit  
5 Ω  
5 W  
1 A ± 0.1 A  
BAT+  
BAT+  
R4  
66.5 Ω  
0.25 W  
D1  
1N4148  
DMM  
+
DC+  
C1  
2000 µF  
25 V  
R5  
66.5 Ω  
0.25 W  
DC–  
BAT–  
BAT–  
R3  
3 kΩ  
0.25 W  
8
7
6
5
8
7
6
2
5
1
Q1  
Si4410DY  
Q2  
Si4410DY  
4
4
R6  
10 kΩ  
R7  
10 kΩ  
3
2
1
3
0.25 W  
0.25 W  
2.2.2 Equipment Setup  
1) Connect the load board to the BAT+ and BAT. Set SW1 through SW4 in  
the closed position.  
2) Connect a voltage meter to the BAT+/BAToutput to monitor the output  
voltage (Range is 0 to 5 V).  
3) Set the lab supply for 5.1 V ±0.1VDC, 1.0 ±0.1 A current limit and then turn  
off supply. Connect the source supply to a current meter and to J1, noting  
polarity. (You may use an internal source current meter if it has 5% or  
better accuracy.)  
4) Install shunt jumpers on the LED pins 1 and 2 of each header J4, J5, and  
J6.  
5) Connect the scope to the output, BAT+.  
2.2.3 Procedure  
1) Ensure that equipment setup steps are followed. (Switches should be in  
the closed position, shunts installed, and power source set to 5.1V/-0.1V.  
Turn on the power source.  
2) Verify that output voltage BAT+ charges up to between 2.5 V and 2.9 V,  
and the red LED (D1) and green LED (D3) are lit.  
3) Open switch SW2, and then close switch SW2.  
2-4  
 
Test Procedure  
4) Verify that output voltage BAT+ settles between 3.2 V and 3.95 V.  
5) Verify that the input current is between 0.69 A and 0.75 A.  
6) Open switch SW3.  
7) Verify that the input current is between 100 mA and 150 mA.  
8) Verify the output voltage BAT+ is between 4.150 VDC and 4.250 VDC.  
9) Open switch SW2.  
10) Verify with a scope (250 ms/div, 1 V/div) that output BAT+ charges and  
discharges are between the maximum limits of 3 V and 4.35 V, with a  
period between 600 ms and 850 ms.  
11) Verify that the LEDs flash between RED (D1) and GREEN (D2, mostly on  
green).  
12) Open switch SW4 and verify that D1 and D2 are off and D3 is on.  
13) Verify, with a scope on BAT+, a square wave between the maximum limits  
of 1.3 and 4.35 VDC and a frequency between 3.5 and 4.5 Hz.  
14) Close switches SW2, SW3, and SW4 (all switches should be closed now)  
and power down the supply.  
15) The EVM is good if all tests are passed.  
Test Summary  
2-5  
 
Chapter 3  
Schematic, Physical Layouts, and  
Bill of Materials  
This chapter contains the schematic diagram, the board layouts and assembly  
drawings, and the bill of materials required for the EVM.  
Topic  
Page  
3.1 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.2 Physical Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3-1  
 
U1  
bq24010  
J1  
4
3
2
1
1
2
1
2
3
4
5
10  
9
BAT+  
DC+  
IN  
OUT  
BAT  
TS  
BAT–  
DC–  
VCC  
8
TS(/CE)  
BAT–  
2
STAT1  
STAT2  
VSS  
7
C2  
1 µF  
10 V  
C1  
1 µF  
10 V  
PG  
6
R1  
1.5 kΩ  
R2  
1.5 kΩ  
ISET  
J2  
J3  
11  
R3  
1
TP1  
1 MΩ  
D1  
Red  
D2  
Green  
2
R5  
1.5 kΩ  
D3  
Green  
C3  
0.47 µF  
R6  
1 MΩ  
R4  
1.13 kΩ  
TP2  
1
2
3
4
STAT1  
STAT2  
DC–  
PG  
LED EXT  
STAT1 JUMPER  
LED EXT  
STAT2 JUMPER  
LED EXT  
PG JUMPER  
1
2
Not installed  
bq24012 EVM (IC)TS pin becomes /CE. R6 becomes 10 kand R3 is removed  
 
Physical Layouts  
3.2 Physical Layouts  
3.2.1 Board Layout  
Figure 32 shows the assembly view of the EVM. Figure 33 shows the top  
layer. Figure 34 shows the bottom layer.  
Figure 32. Assembly View  
Schematic, Physical Layouts, and Bill of Materials  
3-3  
 
Physical Layouts  
Figure 33. Top Layer  
Figure 34. Bottom Layer  
3-4  
 
Bill of Materials  
3.3 Bill of Materials  
Table 31 lists materials required for the EVM.  
Table 31.Bill of Materials  
bq24010 bq24012  
Ref  
Item#  
Description  
Size  
MFR  
Part Number  
–1  
–2  
Des  
1
0
0
C1  
Capacitor, ceramic, X5R,  
1 µF, 10 V  
805  
Panasonic ECJ-2YB1A105K  
Panasonic ECJ-2YB1A105K  
Panasonic ECJ-2YB1C474K  
2
3
1
1
1
2
1
2
3
3
2
0
1
1
0
1
1
1
2
1
2
3
3
0
1
1
0
1
C2  
C3  
D1  
Capacitor, ceramic, X5R,  
1 µF, 10 V  
805  
805  
Capacitor, ceramic, X7R,  
0.47 µF, 16 V  
4
Diode, LED, red, 1.8 V,  
20 mA, 20 mcd  
603  
Lite-On  
Lite-On  
OST  
OST  
Sullins  
Std  
160-1181-1-ND  
160-1183-1-ND  
ED1514  
5
D2, D3 Diode, LED, green, 2.1 V,  
20 mA, 6 mcd  
603  
6
J1  
Terminal block, 2 pin, 6 A,  
3,5 mm  
0.27 × 0.25  
0.55 × 0.25  
0.100 × 3  
603  
7
J2, J3  
Terminal block, 4 pin, 6 A,  
3,5 mm  
ED1516  
8
J4, J5, Header, 3 pin, 100 mil  
J6 spacing, (36-pin strip)  
PTC36SAAN  
Std  
9
R1, R2, Resistor, chip, 1.5 k,  
R5 1/16 W, 1%  
10  
11  
12  
13  
14  
R3, R6 Resistor, chip, 1 M,  
602  
Std  
Std  
1/16 W, 1%  
R6  
R4  
U1  
U1  
Resistor, chip, 10 k,  
1/16 W, 1%  
603  
Std  
Std  
Resistor, chip, 1.3 k,  
1/16 W, 1%  
603  
Std  
Std  
IC, single Li-Ion/Li-Poly,  
charge manager  
MLP10  
MLP10  
0.100  
TI  
bq24010DRC  
bq24012DRC  
IC, single Li-Ion/Li-Poly,  
charge manager  
TI  
15  
16  
3
1
3
1
Shunt, 100-mil, black  
3M  
929950-00  
SLUP162  
PCB, bq24010/2,  
Any  
1.6 in × 1.3 in × 0.031 in  
Notes: 1) These assemblies are ESD sensitive; ESD precautions must be observed.  
2) These assemblies must be clean and free from flux and all contaminants. Use of no-clean flux is not acceptable.  
3) These assemblies must comply with workmanship standards IPC-A-610 Class 2.  
4) Reference designators marked with an asterisk (**) cannot be replaced by substitutes. All other components can  
be replaced with equivalent manufacturer components.  
3.4 Reference  
1) bq2401x data sheet (SLUS530)  
Schematic, Physical Layouts, and Bill of Materials  
3-5  
 

Technika CRT Television LCD32 209V User Manual
Thermador Ventilation Hood HGEW36FS User Manual
TomTom GPS Receiver 6F00101 User Manual
Toshiba CRT Television 36A42 User Manual
Toshiba DVD VCR Combo SD V65HTSU User Manual
Toshiba Flat Panel Television CPBRO2005Eu User Manual
Tripp Lite Switch B034 002 R User Manual
Troy Bilt Tiller 640C Tuffy CRT User Manual
Vizio Car Satellite TV System E320 B0 User Manual
Vulcan Hart Range V36 1 User Manual