Texas Instruments Power Supply SLVP089 User Manual

User’s Guide  
1998  
Mixed-Signal Linear Products  
 
SLVP089 Synchronous Buck  
Converter Evaluation Module  
User’s Guide  
Literature Number: SLVU001A  
July 1998  
Printed on Recycled Paper  
 
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  
 
Preface  
Read This First  
About This Manual  
This users guide is a reference manual for the SLVP089 Synchronous Buck  
Converter Evaluation Module used to evaluate the performance of the TL5001  
PWM Controller. This document provides information to assist managers and  
hardware engineers in application development.  
How to Use This Manual  
This manual provides the information and instructions necessary to design,  
construct, operate, and understand the SLVP089. Chapter 1 describes and  
lists the hardware requirements; Chapter 2 describes design considerations  
and procedures; and Appendix A contains the data sheet for the TL5001 PWM  
Controller  
Related Documentation From Texas Instruments  
The following books describe the TL5001 and related support tools. To obtain  
a copy of any of these TI documents, call the Texas Instruments Literature Re-  
sponse Center at (800) 4778924. When ordering, please identify the book by  
its title and literature number.  
TL5001 Pulse-Width-Modulation Control Circuits Data Sheet (Literature  
number SLVS084C). It contains electrical specifications, available tem-  
perature options, general overview of the device, and application in-  
formation.  
Designing with the TL5001C PWM Controller Application Report  
(Literature number SLVA034).  
iii  
 
If You Need Assistance  
If You Need Assistance . . .  
If you want to . . .  
Contact Texas Instruments at . . .  
Visit TI online  
World Wide Web: http://www.ti.com  
Request more information  
about Texas Instruments  
Call the Product Information  
Mixed  
(MSP)  
Signal  
Products  
Center (PIC) hotline: (972) 6445580  
Send a fax: (972) 4807800  
Write to: Texas Instruments Incorporated  
Product Information Center, MS 3123  
P.O. Box 660246  
Dallas, Texas 75266  
Ask questions about product  
operation or report sus-  
pected problems  
Call the Product Information  
Center (PIC) hotline: (972) 6445580  
Order Texas Instruments  
documentation (see Note 1)  
Call the Product Information  
Center (PIC) hotline: (972) 6445580  
Make suggestions about or  
report errors in documenta-  
tion (see Note 2)  
Send a fax: MSP Marketing Documentation Correction  
(972) 4803160  
Write to: Texas Instruments Incorporated  
MSP Marketing Documentation  
Correction, MS 8710  
P.O. Box 660199  
Dallas, Texas 752660199  
Notes: 1) The literature number for the book is required; see the lower-right corner on the back cover.  
2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the  
publication date from the spine or front cover.  
FCC Warning  
Thisequipmentisintendedforuseinalaboratorytestenvironmentonly. Itgen-  
erates, uses, and can radiate radio frequency energy and has not been tested  
for compliance with the limits of computing devices pursuant to subpart J of  
part 15 of FCC rules, which are designed to provide reasonable protection  
against radio frequency interference. Operation of this equipment in other en-  
vironments may cause interference with radio communications, in which case  
the user at his own expense will be required to take whatever measures may  
be required to correct this interference.  
Trademarks  
TI is a trademark of Texas Instruments Incorporated.  
iv  
 
Contents  
1
2
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
Input/Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1  
2.2  
2.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Design Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.3.1 Duty Cycle Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.3.2 Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.3.3 Power Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2.3.4 Synchronous Switch and Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
2.3.5 Snubber Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
2.3.6 Controller Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
2.3.7 Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
v
 
Figures  
11  
12  
13  
14  
15  
16  
17  
18  
21  
22  
23  
24  
Typical Synchronous Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Input/Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Efficiency Vs Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Power Switch Turn-On and Delay from Q2 Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9  
Power Switch Turn-Off and Delay to Q2 On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9  
Inductor and Output Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Power Stage Bode Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Compensation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
Bode Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
Output Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9  
Tables  
11  
12  
13  
21  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Line/Load Regulation, 3.3-V (Total Variation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Load Regulation and Ripple, 3.3-V (9-V Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
vi  
 
Chapter 1  
Hardware  
The SLVP089 Synchronous Buck Converter Evaluation Module (SLVP089)  
provides a method for evaluating the performance of the TL5001 pulse-width-  
modulation(PWM)controller. Thedevicecontainsallofthecircuitrynecessary  
to control a switch-mode power supply in a voltage-mode configuration. This  
manual explains how to construct basic power conversion circuits including  
the design of the control chip functions and the basic loop. This chapter in-  
cludes the following topics:  
Topic  
Page  
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
1.2 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3  
1.3 Input/Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5  
1.4 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6  
1.5 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7  
1.6 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8  
1-1  
 
Introduction  
1.1 Introduction  
Synchronous buck converters provide the smaller size and higher efficiency  
required by electronic equipment, particularly portable battery-operated  
equipment. The synchronous buck converter reduces power losses  
associated with a standard buck converter by substituting a power MOSFET  
for the commutating diode. This reduces the typical 0.5-V to 1-V diode drop  
to 0.3 V or less and increases system efficiency by up to 10 percent.  
Continuous-current mode is desirable and is used in this EVM for the low  
peak-to-average current ratio. Figure 11 shows a typical synchronous buck  
converter.  
Figure 11. Typical Synchronous Buck Converter  
V
I
+
R3  
C1  
Q1  
Q2  
L1  
V
O
R1  
R2  
Controller  
FB  
+
C2  
CR1  
R4  
Transistor Q1 is the power switch and Q2 is the synchronous switch. A diode  
in parallel with Q2 allows inductor current flow during the dead time when both  
transistors are turned off. If dead time is not present in this configuration, high  
transient shoot-through currents will flow during the transition when one tran-  
sistor is turning on and the other is turning off, usually resulting in destruction  
of the power stage switches.  
TheSLVP089evaluationmodulewillsupplyanominal3.3-Voutputoveraload  
range from 0 to 3 A using a dc input voltage of 5.5 V to 12 V. Full load efficiency  
is typically 90 percent.  
1-2  
 
1.2 Schematic  
Figure 12. Schematic Diagram  
J1  
5.5 V to 12 V  
1
V
V
GND  
GND  
I
I
2
3
4
+
+
C10  
100 µ F  
C5  
100 µ F  
C11  
0.47µ F  
R5  
10 kΩ  
Q1  
IRF7406  
PMOS  
C14  
0.1 µ F  
L1  
µ H  
27  
J2  
R6  
R10  
1 kΩ  
C15  
C7  
C13  
C12  
100µ F  
1
15 Ω  
U2  
3.3 V  
1.0 µ F  
100µ F 10µ F  
+
+
2
3
4
TPS2812  
3.3 V  
RTN  
RTN  
1
6
R7  
3.3 Ω  
CR3  
C9  
0.22 µ F  
BAS16ZX  
V
V
DD  
CC  
2
CR1  
8
7
REG  
R8  
121 kΩ  
V
CC  
R12 10 kΩ  
30BQ015  
6
3
4
7
2
4
DTC  
1IN  
2IN  
C6  
1OUT  
2OUT  
U1  
TL5001  
Q2  
1000 pF  
C2  
IRF7201  
R11 30 kΩ  
NMOS  
5
COMP  
µ F  
0.033  
R2  
1.6 kΩ  
GND  
1
R13  
10 kΩ  
OUT  
SCP  
C3  
0.0022  
FB  
RT  
3
CR2  
BAS16ZX  
µ F  
5
R4  
+
R9  
1.00 kΩ  
C1  
1µ F  
2.32 kΩ  
GND  
8
R9  
90.9 kΩ  
C4  
0.022µ F  
R3  
180 Ω  
Note: Frequency is set to 100 kHz by R9. See TL5001 data sheet for the curve of oscillator frequency versus timing resistance.  
 
Input/Output Connections  
1.3 Input/Output Connections  
Figure 13 shows the input/output connections to the SLVP089.  
Figure 13. Input/Output Connections  
Power Supply  
+
C5  
Q1  
R7  
Q2  
R5  
C11  
L1  
C10  
J1  
U2  
R13  
C6  
CR1  
R12  
J2  
C14  
1
CR3  
R6  
R10  
1
JMP1  
C13  
C12  
C8  
SLVP089  
R11  
CR2  
C15  
U1  
R4  
R3  
C3  
C2  
R9  
R8  
TEXAS INSTRUMENTS  
TL5001  
+3.3V, 3 AMP  
SYNC. RECT BUCK  
EVAL BOARD  
REV2  
C4  
C9  
C1  
R2  
R1  
LOAD  
+
Notes: 1) Source power should be able to supply a minimum of 2.5 A at 5.5-V input and/or 1.1-A at 12-V input.  
2) Loadshouldbeabletosinkupto3Awithadequatepowerrating. Resistiveloadswithadequateratingsmaybeused.  
1-4  
 
Board Layout  
1.4 Board Layout  
Figure 14 shows the SLVP089 board layout.  
Figure 14. Board Layout  
C5  
Q1  
Q2  
R5  
L1  
C11  
C10  
R7  
U2  
R13  
C6  
CR1  
J1  
R12  
C14  
J2  
1
CR3  
1
R6  
R10  
JMP1  
C13  
C12  
C8  
R11CR2  
C15  
U1  
R4  
R3  
C3  
C2  
R9  
R8  
TEXAS INSTRUMENTS  
SLVP089  
EVAL BOARD  
REV2  
C4  
TL5001  
+3.3V, 3 AMP  
YNC. RECT BUCK  
C9  
C1  
R2  
R1  
Hardware  
1-5  
 
Bill of Materials  
1.5 Bill of Materials  
Table 11 lists materials required for the SLVP089.  
Table 11.Bill of Materials  
Qty Reference Part Number  
Mfr  
Description  
1
1
1
1
1
1
1
4
C1  
ECS-T1CY105R  
Standard  
Panasonic  
Capacitor, Tant, 1 F, 20%, A Case  
C11  
C13  
C14  
C2  
Capacitor, Cer, 0.47 F, 10%, X7R, 1210  
Capacitor, Cer, 10 F, 10 V, Y5V,3225  
Capacitor, Cer, 0.1 F, 10%, X7R, 1206  
Capacitor, Cer, 0.033 F, 10%, X7R, 1206  
Capacitor, Cer, 0.0022 F, 10%, X7R, 0805  
Capacitor, Cer, 0.022 F, 10%, X7R, 0805  
Capacitor, Tant, 100 F, 10 V, D Case  
C3225Y5V1C106Z  
Standard  
TDK  
Standard  
C3  
Standard  
C4  
Standard  
C5, C7,  
TPSD107M010R0100 AVX  
C10, C12  
1
1
1
2
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
C6  
Standard  
Standard  
Capacitor, Cer, 1000 pF, 5%, NPO, 0805  
Capacitor, Cer, 0.22 F, 10%, X7R, 1210  
Rectifier, Schottky, 3 A, 15 V  
C9  
CR1  
CR2, CR3  
J1, J2  
L1  
30BQ015  
BAS16ZXCT  
Standard  
NOVA 1  
IR  
Zetex  
Diode, Signal, SOT-23  
Connector, 4-pin header, 25 Mil, 0.1′′ Sp. Gold  
Nova Mag  
Inductor, 27 H  
A
Q1  
IRF7406  
IRF7201  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
TL5001CD  
TPS2812D  
SLVP089  
IR  
IR  
Transistor, P-CH FET, 30 V, 0.04 , 4.7 A, SO-8  
Transistor, N-CH FET, 30 V, 0.03 , 7 A, SO-8  
Resistor, 1.00 k  
Q2  
R1  
R12, R13  
R2  
Resistor, 10 k  
Resistor, 1.6 k  
R3  
Resistor, 180  
R4  
Resistor, 2.32 k  
R5  
Resistor, 10 k  
R6  
Resistor, 15  
R7  
Resistor, 3.3  
R8  
Resistor, 121 k  
U1  
TI  
TI  
IC, PWM, SO-8  
U2  
IC, dual MOSFET driver, SO-8  
PWB  
1-6  
 
Test Results  
1.6 Test Results  
Tables 12 and 13, along with Figures 15 through 18, show the test results  
for the SLVP089.  
Table 12.Line/Load Regulation, 3.3-V (Total Variation)  
Line/Load  
0.3 A  
3.330  
3.330  
3.330  
3.330  
3.331  
3.331  
3.331  
3.331  
0.03%  
0.9 A  
3.329  
3.329  
3.328  
3.329  
3.330  
3.330  
3.330  
3.330  
0.06%  
1.5 A  
3.328  
3.328  
3.328  
3.328  
3.328  
3.328  
3.328  
3.329  
0.03%  
3.0 A  
3.324  
3.324  
3.325  
3.325  
3.325  
3.325  
3.325  
3.325  
0.03%  
5.0 A  
3.320  
3.320  
3.321  
3.321  
3.321  
3.321  
3.321  
3.321  
0.03%  
Load Reg.  
0.18%  
0.18%  
0.15%  
0.15%  
0.18%  
0.18%  
0.18%  
0.18%  
5.5 V Vo(V)  
6.0 V Vo(V)  
7.0 V Vo(V)  
8.0 V Vo(V)  
9.0 V Vo(V)  
10 V Vo(V)  
11 V Vo(V)  
12 V Vo(V)  
Line Reg.  
Note: The calculation for load regulation only accounts for the worst case of load variation under the normal voltage condition  
(i.e., 3.3 V at 3 A). All voltages were measured at the PCB header pins.  
Table 13.Load Regulation and Ripple, 3.3-V (9-V Input)  
Load  
No Load 0.50 A  
1.0 A  
3.329  
18  
2.0 A  
3.327  
24  
3.0 A  
3.325  
24  
5.0 A  
3.321  
32  
Reg.  
Vo(V)  
3.331  
16  
3.330  
16  
0.18%  
Vo Ripple (mV PP)  
Vo Spikes (mV PP)  
0
24  
24  
34  
48  
60  
Figure 15. Efficiency Vs Load  
EFFICIENCY  
vs  
LOAD CURRENT  
100  
95  
90  
85  
80  
75  
V = 5.5 V  
I
V = 9 V  
I
V = 12 V  
I
70  
0
1
2
3
4
5
Load Current A  
Hardware  
1-7  
 
Test Results  
Figure 16. Power Switch Turn-On and Delay from Q2 Off  
V
= 12 V  
CC  
= 1.5 A  
I
O
Q1 DRAIN  
5 V/DIV  
1
2
Q2 GATE  
5 V/DIV  
20 ns/Div  
Figure 17. Power Switch Turn-Off and Delay to Q2 On  
V
= 12 V  
CC  
= 1.5 A  
I
O
Q1 Drain  
5 V/Div  
1
Q2 Gate  
5 V/Div  
2
20 ns/Div  
1-8  
 
Test Results  
Figure 18. Inductor and Output Ripple  
V
= 12 V  
CC  
= 1.5 A  
Inductor  
Ripple  
I
O
1 A/Div  
1DC  
Output  
Ripple  
20 mV/Div  
2AC  
2 µs/Div  
Hardware  
1-9  
 
1-10  
 
Chapter 2  
Design Procedure  
There are many possible ways to proceed when designing power supplies.  
This chapter shows the procedure used in the design of the SLVP089. The  
chapter includes the following topics:  
Topic  
Page  
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2 Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
2.3 Design Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
2-1  
 
Introduction  
2.1 Introduction  
The SLVP089 is a dc-dc synchronous buck converter module that provides a  
3.3-V output at up to 3 A with an input voltage range of 5.5 V to 12 V. The PWM  
controller is a TL5001 operating at a nominal frequency of 100 kHz. The  
TL5001 is configured for a maximum duty cycle of 100 percent and has short-  
circuit protection built in. The synchronous power stage consists of a PMOS  
switch and an NMOS synchronous rectifier.  
2-2  
 
Operating Specifications  
2.2 Operating Specifications  
Table 21 lists the operating specifications for the SLVP089.  
Table 21.Operating Specifications  
Specification  
Min  
5.5  
3.10 3.30 3.50  
Typ  
Max Units  
Input Voltage Range  
12  
V
V
Output Voltage Range  
Output Current Range  
Operating Frequency  
Output Ripple  
0
3
A
100  
kHz  
mV  
50  
Efficiency (V = 9 V, I = 3 A)  
85% 90%  
i
O
Design Procedure  
2-3  
 
Design Procedures  
2.3 Design Procedures  
Detailed steps in the design of a buck-mode converter may be found in  
Designing With the TL5001C PWM Controller (literature number SLVA034)  
from TI. This section shows the basic steps involved in this design.  
2.3.1 Duty Cycle Estimate  
The duty cycle for a continuous-mode step-down converter is approximately:  
V
V
O
d
D
V
V  
I
SAT  
Assuming the diode or synchronous switch forward voltage V = 0.12 V and  
d
the power-switch-on voltage V  
= 0.15 V, the duty cycle for V = 5.5, 9, and  
SAT  
I
12 V is 0.64, 0.39, and 0.29, respectively.  
2.3.2 Output Filter  
A synchronous buck converter uses a single-stage LC filter. Choose an induc-  
tortomaintaincontinuous-modeoperationdownto15percentoftheratedout-  
put load:  
I
2
0.15  
The inductor value is:  
V V V  
I
2
0.15  
3
0.9 A  
O
O
D
t
I
SAT  
O
L
I
O
6  
(12 0.15 3.3)  
0.29  
10  
10  
27.6  
H
0.9  
Assuming that all of the inductor ripple current flows through the capacitor and  
the effective series resistance (ESR) is zero, the capacitance needed is:  
I
O
0.9  
C
22.5  
F
3
8
100  
10  
0.05  
8
f
V
O
Assuming the capacitance is very large, the ESR needed to limit the ripple to  
50 mV is:  
V
O
0.05  
0.9  
ESR  
0.056  
I
O
The output filter capacitor should be rated at least ten times the calculated ca-  
pacitanceand 3050 percent lower than the calculated ESR. This design used  
two 100- F capacitors in parallel with a multilayer ceramic to reduce ESR.  
2.3.3 Power Switch  
Based on the preliminary estimate, r  
should be less than 0.015 V 3A  
DS(ON)  
= 50 m . The IRF7406 is a 30-V p-channel MOSFET with r  
= 40 m  
DS(ON)  
2-4  
 
Design Procedures  
The power dissipation (conduction + switching losses) can be approximated  
as:  
2
O
P
I
r
D
0.5  
V
I
t
f
D
DS(ON)  
I
O
r
f
Assuming total switching time, t , = 100 ns, a 55°C maximum ambient tem-  
r+f  
perature, and r  
adjustment factor = 1.6, then:  
DS(ON)  
(0.04  
5.5  
2
P
3
1.6)  
0.64  
0.1  
D
6  
3
0.5  
3
10  
100  
10  
0.45 W  
The thermal impedance for Q1 R  
a one-inch-square pattern, thus:  
= 90°C/W for FR-4 with 2-oz. copper and  
JA  
55  
T
T
R
P
(90  
0.45)  
96°C  
J
A
JA  
D
2.3.4 Synchronous Switch and Rectifier  
Thesynchronousswitchcalculationsfollowthesamepathasthepowerswitch  
except that the duty cycle is 1D. Then r should be less than 0.012 V  
DS(ON)  
3A = 40 m . Selecting an IRF7201 with an r  
= 30 m , then:  
DS(ON)  
2
P
3
(0.03  
5.5  
1.6)  
0.36  
0.1  
D
6  
3
0.5  
3
10  
100  
10  
0.238 W  
T
T
A
R
P
55  
(90  
0.238)  
76°C  
J
JA  
D
The catch rectifier serves as a backup device for the synchronous switch and  
conducts during the time interval when both devices are off. The 30BQ015 is  
a 3-A, 15-V rectifier in an SMC power surface-mount package. If the synchro-  
nous switch were not used, the power dissipation for the catch diode would be:  
P
I
V
1 D  
3
0.7  
0.71  
1.491 W  
D
O
D
Min  
However, since the catch diode actually conducts only during the deadtime  
and switching time, the power dissipation is:  
P
I
V
t
f
D
O
D
r
f
6  
3
3
0.7  
0.1 10  
100 10  
2.1 mW  
2.3.5 Snubber Network  
Asnubbernetworkisusuallyneededtosuppresstheringingatthenodewhere  
the power switch drain, output inductor, and synchronous switch drain con-  
nect. This is usually a trial-and-error sequence of steps to optimize the net-  
work, but as a starting point, select a snubber capacitor with a value that is  
410 times larger than the estimated capacitance of the synchronous switch  
and catch rectifier. Then, measuring a ringing time constant of 3 ns, R is:  
3
109  
C
3
109  
1012  
R
3
1000  
Design Procedure  
2-5  
 
Design Procedures  
2.3.6 Controller Functions  
The controller functions, oscillator frequency, soft-start, dead-time-control,  
short-circuit protection, and sense-divider-network are discussed in this sec-  
tion.  
The oscillator frequency is set by selecting the resistance value from the graph  
in figure 6 of the TL5001 data sheet. For 100 kHz, a value of 90.9 k is se-  
lected.  
Dead-time control provides a minimum off-time for the power switch in each  
cycle. Set this time by connecting a resistor between DTC and GND. For this  
design, a maximum duty cycle of 100% is chosen. Then R8 is calculated as:  
3
R8  
(R9  
1.25)  
10  
D V  
V  
V
O(100%)  
O(0%)  
0.65]  
O(0%)  
3
(90.9  
1.25)  
10  
[1(1.3 0.65)  
119.8 K  
121 k  
Soft-start is added to reduce power-up transients. This is implemented by ad-  
ding a capacitor across the dead-time resistor. In this design, a soft-start time  
of 25 ms is used:  
t
0.025 s  
121 k  
R
C
0.21  
F
R
DT  
The TL5001 has short circuit protection instead of a current sense circuit. If not  
used, the SCP terminal must be connected to ground to allow the converter  
to start up. If a timing capacitor is connected to SCP, it should have a time  
constant that is greater than the soft-start time constant. This time constant is  
chosen to be 75 ms:  
C( F)  
12.46  
t
12.46  
0.075 s  
0.93  
F
SCP  
2.3.7 Loop Compensation  
Loop compensation is necessary to stabilize the converter over the full range  
of load, line, and gain conditions. A buck-mode converter has a two-pole LC  
output filter with a 40-dB-per-decade rolloff. The total closed-loop response  
neededforstabilityisa20-dB-per-decaderolloffwithaminimumphasemargin  
of 30 degrees over the full bandwidth for all conditions. In addition, sufficient  
bandwidth must be designed into the circuit to assure that the converter will  
havegoodtransientresponse. Bothoftheserequirementsareachievedbyad-  
ding compensation components around the error amplifier to modify the total  
loop response.  
The first step in design of the loop compensation network is the design of the  
output sense divider. This sets the output voltage and the top resistor deter-  
mines the relative size of the rest of the compensation design. Since the  
TL5001 input bias current is 0.5 A (worst case), the divider current should be  
at least 0.5 mA. Using a 1-k resistor for the bottom of the divider gives a divid-  
er current of 1 mA. The top of the divider is calculated as:  
V
1  
(
)
3.3 1  
0.001  
O
R
2.3 k  
1 mA  
2-6  
 
Design Procedures  
Calculating the pulse-width-modulator gain as the change in output voltage  
divided by the change in PWM input voltage gives:  
V
O
9 0  
1.3 0.65  
A
13.85  
22.8 db  
PWM  
V
COMP  
The LC filter has a double pole at:  
1
1
H
2.64 kHz  
2
LC  
2
21.6  
168  
F
(worst case values) and rolls off at 40-dB per decade after that until the ESR  
zero is reached at:  
1
1
38 kHz  
6  
2 RC  
2 (0.025) 210 10  
This information is enough to calculate the required compensation values.  
Figure 21 shows the power stage gain and phase plots.  
Figure 21. Power Stage Bode Plot  
FREQUENCY RESPONSE  
0
50  
40  
30  
20  
10  
0
45  
90  
135  
180  
225  
270  
10  
315  
20  
30  
360  
2
10  
3
4
10  
5
10  
10  
10  
Frequency  
This response must be corrected by addition of the following:  
A pole at zero to give high dc gain  
Two zeroes at approximately 2.6 kHz to cancel the LC poles  
A pole at approximately 38 kHz to cancel the ESR zero  
A final pole to roll off high-frequency gain  
The compensation circuit shown in figure 22 can be used to implement the  
above conditions.  
Design Procedure  
2-7  
 
Design Procedures  
Figure 22. Compensation Network  
C3  
R2  
R4  
C2  
C4  
R3  
_
+
V
I
V
O
V
ref  
The transfer function for this circuit is:  
f
f
V
[1  
sR2(C2  
sC2R4 [1  
C3)] [1  
sC3R2] [1  
sC4(R3  
sC4R3]  
R4)]  
Z1 Z2  
O
V
I
f
f
f
P1 P2 P3  
The desired output regulation is ±6 percent total deviation. The PWM control-  
ler tolerance is ±5 percent, and the divider resistors are 1 percent; therefore,  
thecontrolloopmustbeveryprecise. Aminimumdcgainof1000(60dB)gives  
a0.1percenttolerance. Theintegrator(R4, C2)setsthegainofthecompensa-  
tion network. The minimum modulator gain is 18 dB, therefore the compensa-  
tion network must have a gain of at least 42 dB. With a desired crossover fre-  
quency of 20 kHz and a desired slope of 20 dB per decade, choose an integra-  
tor frequency of 2 kHz. This gives a gain of 46 dB at 10 Hz, which is sufficient  
for this application. If more gain is needed, increase the integrator frequency.  
R4 is already known, so C2 is calculated as:.  
1
1
C2  
0.034  
F
0.033  
F
2 (2 kHz)(2.32 k )  
2 f  
(R4)  
P1  
Setting f = 3 kHz to compensate for one of the LC poles gives:  
Z2  
1
1
C4  
0.023  
F
0.022  
F
2 (3 kHz)(2.32 k )  
2 f (R4)  
Z2  
Now R3 can be calculated using f (40 kHz), the ESR compensator:  
P3  
1
1
R3  
181  
180  
2 (40 kHz)(0.022 F)  
2
f
(C4)  
P3  
The other LC filter compensator uses R2 and C2:  
1
1
R2  
1.6 k  
2 (3 kHz)(0.033 F)  
2 f (C2)  
Z1  
The final rolloff pole (selected at 50 kHz) uses C3 and R2:  
1
1
C3  
0.002  
F
0.0022  
F
2 (50 kHz)(1.6 k )  
2 f  
(R2)  
P2  
2-8  
 
Design Procedures  
Figure 23 shows the bode plot for the compensation network.  
Figure 23. Bode Plot  
90  
70  
45  
40  
35  
50  
30  
10  
30  
25  
10  
30  
50  
20  
15  
10  
70  
5
0
90  
2
10  
3
4
10  
5
10  
10  
10  
Frequency Hz  
Note from the output response shown in Figure 24 that the minimum phase  
margin is 40 degrees and the bandwidth is 18 kHz under nominal operating  
conditions.  
Figure 24. Output Response  
OUTPUT RESPONSE  
180  
225  
270  
315  
360  
70  
60  
50  
40  
30  
20  
10  
0
10  
20  
2
10  
3
4
10  
5
10  
10  
10  
Frequency Hz  
Design Procedure  
2-9  
 
2-10  
 

TC electronic SDN BHD Stereo Receiver 24D User Manual
Tektronix Portable Generator PFG 5105 User Manual
Toshiba Flat Panel Television 17WL46 User Manual
TRENDnet Network Hardware TPL306E2K User Manual
TRENDnet Switch PF 16 PCMCIA User Manual
Tricity Bendix Cooktop SB431 User Manual
Tripp Lite Surge Protector CCI6PLUS User Manual
Tripp Lite Surge Protector TLP725 User Manual
Vizualogic Car Video System A 1000 User Manual
VTech Cordless Telephone cs5121 User Manual